A mathematical framework for inferring connectivity in probabilistic neuronal networks.

نویسنده

  • Duane Q Nykamp
چکیده

We describe an approach for determining causal connections among nodes of a probabilistic network even when many nodes remain unobservable. The unobservable nodes introduce ambiguity into the estimate of the causal structure. However, in some experimental contexts, such as those commonly used in neuroscience, this ambiguity is present even without unobservable nodes. The analysis is presented in terms of a point process model of a neuronal network, though the approach can be generalized to other contexts. The analysis depends on the existence of a model that captures the relationship between nodal activity and a set of measurable external variables. The mathematical framework is sufficiently general to allow a large class of such models. The results are modestly robust to deviations from model assumptions, though additional validation methods are needed to assess the success of the results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ENERGY AWARE DISTRIBUTED PARTITIONING DETECTION AND CONNECTIVITY RESTORATION ALGORITHM IN WIRELESS SENSOR NETWORKS

 Mobile sensor networks rely heavily on inter-sensor connectivity for collection of data. Nodes in these networks monitor different regions of an area of interest and collectively present a global overview of some monitored activities or phenomena. A failure of a sensor leads to loss of connectivity and may cause partitioning of the network into disjoint segments. A number of approaches have be...

متن کامل

A new conforming mesh generator for three-dimensional discrete fracture networks

Nowadays, numerical modelings play a key role in analyzing hydraulic problems in fractured rock media. The discrete fracture network model is one of the most used numerical models to simulate the geometrical structure of a rock-mass. In such media, discontinuities are considered as discrete paths for fluid flow through the rock-mass while its matrix is assumed impermeable. There are two main pa...

متن کامل

Inferring gene regulatory networks from time series data using the minimum description length principle

MOTIVATION A central question in reverse engineering of genetic networks consists in determining the dependencies and regulating relationships among genes. This paper addresses the problem of inferring genetic regulatory networks from time-series gene-expression profiles. By adopting a probabilistic modeling framework compatible with the family of models represented by dynamic Bayesian networks...

متن کامل

An efficient symmetric polynomial-based key establishment protocol for wireless sensor networks

An essential requirement for providing secure services in wireless sensor networks is the ability to establish pairwise keys among sensors. Due to resource constraints on the sensors, the key establishment scheme should not create significant overhead. To date, several key establishment schemes have been proposed. Some of these have appropriate connectivity and resistance against key exposure, ...

متن کامل

Inferring Biological Networks

1. Abstract 2. Introduction 3. Computational Approaches for Identifying Gene Modules 3.1. Advanced Statistical Approaches 3.2. Matrix Decomposition Approaches 4. Computational Approaches for Inferring Gene Connectivity 4.1. ODE-based Models 4.2. Bayesian Networks 4.3. Coexpression Networks 4.4. Probabilistic Boolean Networks 4.5. Inference from Multiple Sources of Data 5. Network Analysis in Si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical biosciences

دوره 205 2  شماره 

صفحات  -

تاریخ انتشار 2007